-
classmethod galois.FieldArray.Random(shape: ShapeLike =
()
, low: ElementLike =0
, high: ElementLike | None =None
, seed: int | Generator | None =None
, dtype: DTypeLike | None =None
) Self Creates an array with random elements.
- Parameters:¶
- shape: ShapeLike =
()
¶ A NumPy-compliant
shape
tuple. The default is()
which represents a scalar.- low: ElementLike =
0
¶ The smallest element (inclusive). The default is 0.
- high: ElementLike | None =
None
¶ The largest element (exclusive). The default is
None
which representsorder
.- seed: int | Generator | None =
None
¶ Non-negative integer used to initialize the PRNG. The default is
None
which means that unpredictable entropy will be pulled from the OS to be used as the seed. Anumpy.random.Generator
can also be passed.- dtype: DTypeLike | None =
None
¶ The
numpy.dtype
of the array elements. The default isNone
which represents the smallest unsigned data type for thisFieldArray
subclass (the first element indtypes
).
- shape: ShapeLike =
- Returns:¶
An array of random elements.
Examples¶
Generate a random matrix with an unpredictable seed.
In [1]: GF = galois.GF(31) In [2]: GF.Random((2, 5)) Out[2]: GF([[13, 19, 6, 3, 7], [13, 7, 17, 9, 9]], order=31)
Generate a random array with a specified seed. This produces repeatable outputs.
In [3]: GF.Random(10, seed=123456789) Out[3]: GF([ 7, 29, 20, 27, 18, 5, 2, 0, 24, 24], order=31) In [4]: GF.Random(10, seed=123456789) Out[4]: GF([ 7, 29, 20, 27, 18, 5, 2, 0, 24, 24], order=31)
Generate a group of random arrays using a single global seed.
In [5]: rng = np.random.default_rng(123456789) In [6]: GF.Random(10, seed=rng) Out[6]: GF([ 7, 29, 20, 27, 18, 5, 2, 0, 24, 24], order=31) In [7]: GF.Random(10, seed=rng) Out[7]: GF([20, 15, 3, 28, 22, 0, 5, 10, 1, 0], order=31)