- property galois.ReedSolomon.roots : FieldArray
The \(d - 1\) roots of the generator polynomial \(g(x)\).
These are consecutive powers of \(\alpha^c\), specifically \(\alpha^c, \dots, \alpha^{c+d-2}\).
Examples¶
Construct a narrow-sense \(\textrm{RS}(15, 9)\) code over \(\mathrm{GF}(2^4)\) with first consecutive root \(\alpha\).
In [1]: rs = galois.ReedSolomon(15, 9); rs Out[1]: <Reed-Solomon Code: [15, 9, 7] over GF(2^4)> In [2]: rs.roots Out[2]: GF([ 2, 4, 8, 3, 6, 12], order=2^4) In [3]: rs.generator_poly Out[3]: Poly(x^6 + 7x^5 + 9x^4 + 3x^3 + 12x^2 + 10x + 12, GF(2^4)) # Evaluate the generator polynomial at its roots in GF(q) In [4]: rs.generator_poly(rs.roots) Out[4]: GF([0, 0, 0, 0, 0, 0], order=2^4)
Construct a non-narrow-sense \(\textrm{RS}(15, 9)\) code over \(\mathrm{GF}(2^4)\) with first consecutive root \(\alpha^3\).
In [5]: rs = galois.ReedSolomon(15, 9, c=3); rs Out[5]: <Reed-Solomon Code: [15, 9, 7] over GF(2^4)> In [6]: rs.roots Out[6]: GF([ 8, 3, 6, 12, 11, 5], order=2^4) In [7]: rs.generator_poly Out[7]: Poly(x^6 + 15x^5 + 8x^4 + 7x^3 + 9x^2 + 3x + 8, GF(2^4)) # Evaluate the generator polynomial at its roots in GF(q) In [8]: rs.generator_poly(rs.roots) Out[8]: GF([0, 0, 0, 0, 0, 0], order=2^4)