-
galois.FieldArray.log(base: ElementLike | ArrayLike | None =
None
) int | ndarray Computes the discrete logarithm of the array \(x\) base \(\beta\).
- Parameters:¶
- base: ElementLike | ArrayLike | None =
None
¶ A primitive element or elements \(\beta\) of the finite field that is the base of the logarithm. The default is
None
which usesprimitive_element
.Slower performance
If the
FieldArray
is configured to use lookup tables (ufunc_mode == "jit-lookup"
) and this method is invoked with a base different fromprimitive_element
, then explicit calculation will be used (which is slower than using lookup tables).
- base: ElementLike | ArrayLike | None =
- Returns:¶
An integer array \(i\) of powers of \(\beta\) such that \(\beta^i = x\). The return array shape obeys NumPy broadcasting rules.
Examples
Compute the logarithm of \(x\) with default base \(\alpha\), which is the specified primitive element of the field.
In [1]: GF = galois.GF(3**5) In [2]: alpha = GF.primitive_element; alpha Out[2]: GF(3, order=3^5) In [3]: x = GF.Random(10, low=1); x Out[3]: GF([195, 89, 197, 203, 78, 25, 84, 227, 109, 120], order=3^5) In [4]: i = x.log(); i Out[4]: array([234, 166, 180, 63, 132, 88, 208, 146, 165, 116]) In [5]: np.array_equal(alpha ** i, x) Out[5]: True
In [6]: GF = galois.GF(3**5, repr="poly") In [7]: alpha = GF.primitive_element; alpha Out[7]: GF(α, order=3^5) In [8]: x = GF.Random(10, low=1); x Out[8]: GF([2α^4 + α^3 + 2α^2 + 2α + 2, α^4 + 2α^3 + 2α^2 + 2α + 1, 2α^4 + 2α^3 + 1, 2α^4 + 2α^3 + 2α^2 + α, α^4 + α^3 + 2α^2 + α + 2, 2α^4 + 2α^2 + 2, α^2 + α + 1, α^4 + 2α^2 + 2α + 1, α^4 + α^3 + α^2, 2α^4 + 2α^3 + α^2 + 2α + 1], order=3^5) In [9]: i = x.log(); i Out[9]: array([175, 184, 240, 96, 218, 27, 10, 235, 12, 97]) In [10]: np.array_equal(alpha ** i, x) Out[10]: True
In [11]: GF = galois.GF(3**5, repr="power") In [12]: alpha = GF.primitive_element; alpha Out[12]: GF(α, order=3^5) In [13]: x = GF.Random(10, low=1); x Out[13]: GF([ α^43, α^186, α^10, α^161, α^191, α^217, α^181, α^181, α^70, α^40], order=3^5) In [14]: i = x.log(); i Out[14]: array([ 43, 186, 10, 161, 191, 217, 181, 181, 70, 40]) In [15]: np.array_equal(alpha ** i, x) Out[15]: True
With the default argument,
numpy.log()
andlog()
are equivalent.In [16]: np.array_equal(np.log(x), x.log()) Out[16]: True
Compute the logarithm of \(x\) with a different base \(\beta\), which is another primitive element of the field.
In [17]: beta = GF.primitive_elements[-1]; beta Out[17]: GF(242, order=3^5) In [18]: i = x.log(beta); i Out[18]: array([237, 226, 72, 167, 141, 183, 69, 69, 20, 46]) In [19]: np.array_equal(beta ** i, x) Out[19]: True
In [20]: beta = GF.primitive_elements[-1]; beta Out[20]: GF(2α^4 + 2α^3 + 2α^2 + 2α + 2, order=3^5) In [21]: i = x.log(beta); i Out[21]: array([237, 226, 72, 167, 141, 183, 69, 69, 20, 46]) In [22]: np.array_equal(beta ** i, x) Out[22]: True
In [23]: beta = GF.primitive_elements[-1]; beta Out[23]: GF(α^185, order=3^5) In [24]: i = x.log(beta); i Out[24]: array([237, 226, 72, 167, 141, 183, 69, 69, 20, 46]) In [25]: np.array_equal(beta ** i, x) Out[25]: True
Compute the logarithm of a single finite field element base all of the primitive elements of the field.
In [26]: x = GF.Random(low=1); x Out[26]: GF(15, order=3^5) In [27]: bases = GF.primitive_elements In [28]: i = x.log(bases); i Out[28]: array([ 6, 200, 98, 124, 108, 58, 122, 36, 100, 128, 170, 2, 228, 194, 134, 10, 184, 78, 208, 48, 120, 70, 202, 12, 114, 178, 190, 164, 222, 80, 56, 60, 204, 218, 158, 146, 138, 136, 188, 74, 32, 14, 20, 28, 230, 172, 166, 118, 168, 210, 180, 174, 130, 82, 234, 68, 8, 94, 90, 238, 216, 46, 126, 102, 214, 212, 224, 186, 62, 236, 76, 226, 162, 192, 16, 150, 92, 72, 106, 156, 54, 34, 104, 152, 84, 206, 24, 40, 196, 112, 64, 42, 96, 4, 38, 148, 232, 26, 142, 86, 50, 116, 52, 18, 30, 160, 182, 240, 144, 140]) In [29]: np.all(bases ** i == x) Out[29]: True
In [30]: x = GF.Random(low=1); x Out[30]: GF(2α^4 + α^3 + α^2 + α + 1, order=3^5) In [31]: bases = GF.primitive_elements In [32]: i = x.log(bases); i Out[32]: array([ 82, 152, 210, 162, 24, 228, 54, 8, 76, 136, 226, 108, 212, 70, 218, 56, 14, 98, 100, 172, 188, 150, 18, 164, 106, 174, 96, 144, 130, 206, 120, 94, 126, 156, 62, 140, 192, 84, 230, 124, 34, 30, 112, 60, 78, 92, 10, 80, 118, 208, 40, 200, 2, 72, 52, 42, 190, 236, 20, 26, 48, 64, 28, 184, 182, 74, 238, 122, 202, 160, 232, 104, 36, 204, 138, 114, 128, 16, 158, 196, 12, 142, 50, 222, 180, 234, 86, 224, 178, 240, 68, 90, 102, 216, 116, 6, 186, 194, 166, 46, 38, 214, 146, 4, 168, 170, 148, 134, 32, 58]) In [33]: np.all(bases ** i == x) Out[33]: True
In [34]: x = GF.Random(low=1); x Out[34]: GF(α^155, order=3^5) In [35]: bases = GF.primitive_elements In [36]: i = x.log(bases); i Out[36]: array([155, 125, 31, 17, 7, 127, 167, 83, 123, 201, 197, 213, 203, 91, 235, 97, 115, 79, 9, 151, 75, 195, 217, 189, 41, 81, 149, 163, 169, 171, 35, 219, 67, 227, 129, 61, 177, 85, 57, 137, 141, 39, 73, 199, 53, 47, 13, 225, 105, 101, 173, 139, 51, 21, 237, 103, 5, 89, 147, 179, 135, 59, 109, 215, 43, 193, 19, 207, 69, 87, 229, 111, 71, 241, 131, 3, 239, 45, 157, 37, 185, 233, 65, 95, 113, 159, 15, 25, 183, 191, 161, 117, 181, 63, 175, 153, 145, 107, 119, 205, 1, 133, 93, 223, 49, 221, 23, 29, 211, 27]) In [37]: np.all(bases ** i == x) Out[37]: True