v0.0.29

Released May 18, 2022

Breaking changes

  • Moved galois.square_free_factorization() function into Poly.square_free_factors() method. (#362)

  • Moved galois.distinct_degree_factorization() function into Poly.distinct_degree_factors() method. (#362)

  • Moved galois.equal_degree_factorization() function into Poly.equal_degree_factors() method. (#362)

  • Moved galois.is_irreducible() function into Poly.is_irreducible() method. This is a method, not property, to indicate it is a computationally-expensive operation. (#362)

  • Moved galois.is_primitive() function into Poly.is_primitive() method. This is a method, not property, to indicate it is a computationally-expensive operation. (#362)

  • Moved galois.is_monic() function into Poly.is_monic property. (#362)

Changes

  • Added galois.set_printoptions() function to modify package-wide printing options. This is the equivalent of np.set_printoptions(). (#363)

    In [1]: GF = galois.GF(3**5, display="poly")
    
    In [2]: a = GF([109, 83]); a
    Out[2]: GF([α^4 + α^3 + 1,       α^4 + 2], order=3^5)
    
    In [3]: f = galois.Poly([3, 0, 5, 2], field=galois.GF(7)); f
    Out[3]: Poly(3x^3 + 5x + 2, GF(7))
    
    In [4]: galois.set_printoptions(coeffs="asc")
    
    In [5]: a
    Out[5]: GF([1 + α^3 + α^4,       2 + α^4], order=3^5)
    
    In [6]: f
    Out[6]: Poly(2 + 5x + 3x^3, GF(7))
    
  • Added galois.get_printoptions() function to return the current package-wide printing options. This is the equivalent of np.get_printoptions(). (#363)

  • Added galois.printoptions() context manager to modify printing options inside of a with statement. This is the equivalent of np.printoptions(). (#363)

  • Added a separate Poly.factors() method, in addition to the polymorphic galois.factors(). (#362)

  • Added a separate Poly.is_square_free() method, in addition to the polymorphic galois.is_square_free(). This is a method, not property, to indicate it is a computationally-expensive operation. (#362)

  • Fixed a bug (believed to be introduced in v0.0.26) where Poly.degree occasionally returned np.int64 instead of int. This could cause overflow in certain large integer operations (e.g., computing q**m when determining if a degree-m polynomial over GF(q) is irreducible). When the integer overflowed, this created erroneous results. (#360, #361)

  • Increased code coverage.

Contributors


Last update: Jul 24, 2022