galois.FieldArray.log(base: ElementLike | ArrayLike | None = None) int | ndarray

Computes the discrete logarithm of the array \(x\) base \(\beta\).

Parameters:
base: ElementLike | ArrayLike | None = None

A primitive element or elements \(\beta\) of the finite field that is the base of the logarithm. The default is None which uses primitive_element.

Slower performance

If the FieldArray is configured to use lookup tables (ufunc_mode == "jit-lookup") and this method is invoked with a base different from primitive_element, then explicit calculation will be used (which is slower than using lookup tables).

Returns:

An integer array \(i\) of powers of \(\beta\) such that \(\beta^i = x\). The return array shape obeys NumPy broadcasting rules.

Examples

Compute the logarithm of \(x\) with default base \(\alpha\), which is the specified primitive element of the field.

In [1]: GF = galois.GF(3**5)

In [2]: alpha = GF.primitive_element; alpha
Out[2]: GF(3, order=3^5)

In [3]: x = GF.Random(10, low=1); x
Out[3]: GF([ 74, 199, 166, 230, 143, 209,   7, 174,  84, 155], order=3^5)

In [4]: i = x.log(); i
Out[4]: array([106, 164,  45,  81,  26,  58, 126,  29, 208,  43])

In [5]: np.array_equal(alpha ** i, x)
Out[5]: True
In [6]: GF = galois.GF(3**5, repr="poly")

In [7]: alpha = GF.primitive_element; alpha
Out[7]: GF(α, order=3^5)

In [8]: x = GF.Random(10, low=1); x
Out[8]: 
GF([        2α^3 + α + 1, 2α^4 + 2α^3 + 2α + 1,          α^4 + α + 2,
              α^4 + 2α^3,   2α^4 + α^2 + α + 2,        α^4 + α^3 + 1,
    α^4 + α^3 + 2α^2 + 2,        α^4 + α^2 + 1,       α^4 + 2α^2 + 1,
                    2α^3], order=3^5)

In [9]: i = x.log(); i
Out[9]: array([ 28, 134,  73,   8, 114, 165,  66, 148,  92, 124])

In [10]: np.array_equal(alpha ** i, x)
Out[10]: True
In [11]: GF = galois.GF(3**5, repr="power")

In [12]: alpha = GF.primitive_element; alpha
Out[12]: GF(α, order=3^5)

In [13]: x = GF.Random(10, low=1); x
Out[13]: 
GF([α^194, α^125, α^119,  α^86, α^214,   α^6,  α^46,  α^52,  α^72, α^156],
   order=3^5)

In [14]: i = x.log(); i
Out[14]: array([194, 125, 119,  86, 214,   6,  46,  52,  72, 156])

In [15]: np.array_equal(alpha ** i, x)
Out[15]: True

With the default argument, numpy.log() and log() are equivalent.

In [16]: np.array_equal(np.log(x), x.log())
Out[16]: True

Compute the logarithm of \(x\) with a different base \(\beta\), which is another primitive element of the field.

In [17]: beta = GF.primitive_elements[-1]; beta
Out[17]: GF(242, order=3^5)

In [18]: i = x.log(beta); i
Out[18]: array([ 90,  53, 155, 232, 234, 140, 186,  84, 228,  10])

In [19]: np.array_equal(beta ** i, x)
Out[19]: True
In [20]: beta = GF.primitive_elements[-1]; beta
Out[20]: GF(2α^4 + 2α^3 + 2α^2 + 2α + 2, order=3^5)

In [21]: i = x.log(beta); i
Out[21]: array([ 90,  53, 155, 232, 234, 140, 186,  84, 228,  10])

In [22]: np.array_equal(beta ** i, x)
Out[22]: True
In [23]: beta = GF.primitive_elements[-1]; beta
Out[23]: GF(α^185, order=3^5)

In [24]: i = x.log(beta); i
Out[24]: array([ 90,  53, 155, 232, 234, 140, 186,  84, 228,  10])

In [25]: np.array_equal(beta ** i, x)
Out[25]: True

Compute the logarithm of a single finite field element base all of the primitive elements of the field.

In [26]: x = GF.Random(low=1); x
Out[26]: GF(54, order=3^5)

In [27]: bases = GF.primitive_elements

In [28]: i = x.log(bases); i
Out[28]: 
array([124, 100, 170,  62,  54, 150, 182,  18,  50,  64, 206, 122, 114,
       218, 188, 126,  92, 160, 104,  24,  60, 156, 222,   6, 178, 210,
       216,  82, 232,  40,  28,  30, 102, 230, 200, 194, 190,  68,  94,
       158,  16, 128,  10,  14, 236,  86, 204, 180,  84, 226,  90, 208,
       186, 162, 238,  34,   4, 168, 166, 240, 108, 144, 184, 172, 228,
       106, 112, 214, 152, 118,  38, 234, 202,  96,   8, 196,  46,  36,
       174,  78, 148, 138,  52,  76,  42, 224,  12,  20,  98,  56,  32,
       142,  48,   2, 140,  74, 116, 134, 192, 164, 146,  58,  26, 130,
       136,  80, 212, 120,  72,  70])

In [29]: np.all(bases ** i == x)
Out[29]: True
In [30]: x = GF.Random(low=1); x
Out[30]: GF(α^4 + α^2 + α + 1, order=3^5)

In [31]: bases = GF.primitive_elements

In [32]: i = x.log(bases); i
Out[32]: 
array([142, 216, 222, 192, 136,  82,  64, 126, 108, 206, 232, 128,  72,
        74, 106, 156, 160, 152,   2, 168, 178, 124, 102,  42,  36,  18,
        60,  90, 172,  38, 196, 210, 230, 158, 190, 148, 120, 234, 174,
       138, 112, 170,  70,  98, 200, 118, 218,  50, 104, 130, 146,   4,
        92, 166, 214, 238,  28, 208, 194, 228,  30,  40,  78, 236, 144,
        16,  58,  46,  96, 100,  24, 186, 204, 188,  56, 162,  80,  10,
         8,  62,  68, 240, 122,  48,  52, 116,  84, 140, 202, 150, 224,
        26,  94,  14,  12,  34,  86, 212, 134, 180,  54, 164, 182, 184,
       226,  76,  32, 114,  20,   6])

In [33]: np.all(bases ** i == x)
Out[33]: True
In [34]: x = GF.Random(low=1); x
Out[34]: GF(α^19, order=3^5)

In [35]: bases = GF.primitive_elements

In [36]: i = x.log(bases); i
Out[36]: 
array([ 19, 109, 149, 191, 221, 103, 225, 235, 115, 123, 135,  87, 117,
       211,  21, 193, 139,   5, 215,  31,  17, 141,  75, 159, 119, 241,
        37, 237, 219, 213, 137,  69,  41,  45,  97,  59, 195, 229,  71,
        73,  61, 125,  23, 129,  83, 101, 203,  51, 169, 181, 207,  67,
        89, 179,  15, 175, 227, 217,  43, 189,  79,  65, 157,  81, 113,
       147, 185, 105,  35, 223,  39, 151,  29,   3,  91, 233,   9, 107,
        13, 131, 171,  27,  47, 199, 145,   7, 197, 167, 177, 153,   1,
       133, 183,  53, 201,  25,  49, 163, 127, 111, 239,  85, 205,  57,
        95,  63, 173, 155,  93, 161])

In [37]: np.all(bases ** i == x)
Out[37]: True