galois.ReedSolomon.encode(message: ArrayLike, output: 'codeword' | 'parity' = 'codeword') FieldArray

Encodes the message \(\mathbf{m}\) into the codeword \(\mathbf{c}\).

Parameters:
message: ArrayLike

The message as either a \(k\)-length vector or \((N, k)\) matrix, where \(N\) is the number of messages.

Shortened codes

For the shortened \([n-s,\ k-s,\ d]\) code (only applicable for systematic codes), pass \(k-s\) symbols into encode() to return the \(n-s\)-symbol message.

output: 'codeword' | 'parity' = 'codeword'

Specify whether to return the codeword or parity symbols only. The default is "codeword".

Returns:

If output="codeword", the codeword as either a \(n\)-length vector or \((N, n)\) matrix. If output="parity", the parity symbols as either a \(n-k\)-length vector or \((N, n-k)\) matrix.

Notes

The message vector \(\mathbf{m}\) is a member of \(\mathrm{GF}(q)^k\). The corresponding message polynomial \(m(x)\) is a degree-\(k\) polynomial over \(\mathrm{GF}(q)\).

\[\mathbf{m} = [m_{k-1},\ \dots,\ m_1,\ m_0] \in \mathrm{GF}(q)^k\]
\[m(x) = m_{k-1} x^{k-1} + \dots + m_1 x + m_0 \in \mathrm{GF}(q)[x]\]

The codeword vector \(\mathbf{c}\) is a member of \(\mathrm{GF}(q)^n\). The corresponding codeword polynomial \(c(x)\) is a degree-\(n\) polynomial over \(\mathrm{GF}(q)\).

\[\mathbf{c} = [c_{n-1},\ \dots,\ c_1,\ c_0] \in \mathrm{GF}(q)^n\]
\[c(x) = c_{n-1} x^{n-1} + \dots + c_1 x + c_0 \in \mathrm{GF}(q)[x]\]

The codeword vector is computed by matrix multiplication of the message vector with the generator matrix. The equivalent polynomial operation is multiplication of the message polynomial with the generator polynomial.

\[\mathbf{c} = \mathbf{m} \mathbf{G}\]
\[c(x) = m(x) g(x)\]

Examples

Encode a single message using the \(\textrm{RS}(15, 9)\) code.

In [1]: rs = galois.ReedSolomon(15, 9)

In [2]: GF = rs.field

In [3]: m = GF.Random(rs.k); m
Out[3]: GF([ 4,  7,  9, 10, 14,  4,  4,  4, 12], order=2^4)

In [4]: c = rs.encode(m); c
Out[4]: GF([ 4,  7,  9, 10, 14,  4,  4,  4, 12,  1,  2, 12,  3, 14,  6], order=2^4)

Compute the parity symbols only.

In [5]: p = rs.encode(m, output="parity"); p
Out[5]: GF([ 1,  2, 12,  3, 14,  6], order=2^4)

Encode a single message using the shortened \(\textrm{RS}(11, 5)\) code.

In [6]: rs = galois.ReedSolomon(15, 9)

In [7]: GF = rs.field

In [8]: m = GF.Random(rs.k - 4); m
Out[8]: GF([0, 6, 2, 4, 7], order=2^4)

In [9]: c = rs.encode(m); c
Out[9]: GF([ 0,  6,  2,  4,  7,  6,  2, 15,  7,  1,  6], order=2^4)

Compute the parity symbols only.

In [10]: p = rs.encode(m, output="parity"); p
Out[10]: GF([ 6,  2, 15,  7,  1,  6], order=2^4)

Encode a matrix of three messages using the \(\textrm{RS}(15, 9)\) code.

In [11]: rs = galois.ReedSolomon(15, 9)

In [12]: GF = rs.field

In [13]: m = GF.Random((3, rs.k)); m
Out[13]: 
GF([[10,  6,  8,  2,  8,  2, 10,  7,  3],
    [ 0, 10, 10, 14, 15, 11, 11, 13,  3],
    [12, 11, 12, 10, 13, 13, 13,  9,  8]], order=2^4)

In [14]: c = rs.encode(m); c
Out[14]: 
GF([[10,  6,  8,  2,  8,  2, 10,  7,  3,  9,  2,  0,  4, 12,  3],
    [ 0, 10, 10, 14, 15, 11, 11, 13,  3,  7, 12, 13,  3, 10, 10],
    [12, 11, 12, 10, 13, 13, 13,  9,  8,  0,  4, 12,  0,  9, 13]],
   order=2^4)

Compute the parity symbols only.

In [15]: p = rs.encode(m, output="parity"); p
Out[15]: 
GF([[ 9,  2,  0,  4, 12,  3],
    [ 7, 12, 13,  3, 10, 10],
    [ 0,  4, 12,  0,  9, 13]], order=2^4)

Encode a matrix of three messages using the shortened \(\textrm{RS}(11, 5)\) code.

In [16]: rs = galois.ReedSolomon(15, 9)

In [17]: GF = rs.field

In [18]: m = GF.Random((3, rs.k - 4)); m
Out[18]: 
GF([[11,  6,  5, 11,  1],
    [15,  4,  2, 13, 11],
    [ 4,  4,  7,  0, 11]], order=2^4)

In [19]: c = rs.encode(m); c
Out[19]: 
GF([[11,  6,  5, 11,  1, 13,  9,  2,  1, 13,  4],
    [15,  4,  2, 13, 11,  2,  0, 13,  2,  9,  3],
    [ 4,  4,  7,  0, 11,  1, 12,  7,  7, 14,  8]], order=2^4)

Compute the parity symbols only.

In [20]: p = rs.encode(m, output="parity"); p
Out[20]: 
GF([[13,  9,  2,  1, 13,  4],
    [ 2,  0, 13,  2,  9,  3],
    [ 1, 12,  7,  7, 14,  8]], order=2^4)