galois.FieldArray.log(base: ElementLike | ArrayLike | None = None) integer | ndarray

Computes the logarithm of the array \(x\) base \(\beta\).

Important

If the Galois field is configured to use lookup tables, ufunc_mode == "jit-lookup", and this function is invoked with a base different from primitive_element, then explicit calculation will be used.

Parameters
base: ElementLike | ArrayLike | None = None

A primitive element(s) \(\beta\) of the finite field that is the base of the logarithm. The default is None which uses primitive_element.

Returns

An integer array \(i\) of powers of \(\beta\) such that \(\beta^i = x\). The return array shape obeys NumPy broadcasting rules.

Examples

Compute the logarithm of \(x\) with default base \(\alpha\), which is the specified primitive element of the field.

In [1]: GF = galois.GF(3**5)

In [2]: alpha = GF.primitive_element; alpha
Out[2]: GF(3, order=3^5)

In [3]: x = GF.Random(10, low=1); x
Out[3]: GF([ 14,  20, 210,   7,  61, 159,   3, 223,  65, 132], order=3^5)

In [4]: i = x.log(); i
Out[4]: array([209, 167, 173, 126, 170, 161,   1, 134, 233, 144])

In [5]: np.array_equal(alpha ** i, x)
Out[5]: True
In [6]: GF = galois.GF(3**5, display="poly")

In [7]: alpha = GF.primitive_element; alpha
Out[7]: GF(α, order=3^5)

In [8]: x = GF.Random(10, low=1); x
Out[8]: 
GF([              α^4 + α + 1, 2α^4 + α^3 + 2α^2 + α + 1,
               α^3 + 2α^2 + α,        2α^4 + α^2 + α + 2,
                    2α^3 + 2α,  α^4 + α^3 + 2α^2 + α + 1,
                   2α^4 + α^3,               α^3 + α + 2,
                    α^3 + α^2,                  2α^3 + 2], order=3^5)

In [9]: i = x.log(); i
Out[9]: array([221, 178, 139, 114, 168,  56, 129,  49,  71,  86])

In [10]: np.array_equal(alpha ** i, x)
Out[10]: True
In [11]: GF = galois.GF(3**5, display="power")

In [12]: alpha = GF.primitive_element; alpha
Out[12]: GF(α, order=3^5)

In [13]: x = GF.Random(10, low=1); x
Out[13]: 
GF([α^123, α^207, α^152,  α^82,  α^66, α^104, α^183, α^196, α^189,  α^69],
   order=3^5)

In [14]: i = x.log(); i
Out[14]: array([123, 207, 152,  82,  66, 104, 183, 196, 189,  69])

In [15]: np.array_equal(alpha ** i, x)
Out[15]: True

With the default argument, numpy.log() and log() are equivalent.

In [16]: np.array_equal(np.log(x), x.log())
Out[16]: True

Compute the logarithm of \(x\) with a different base \(\beta\), which is another primitive element of the field.

In [17]: beta = GF.primitive_elements[-1]; beta
Out[17]: GF(242, order=3^5)

In [18]: i = x.log(beta); i
Out[18]: array([ 87, 111,  78,  58,  88, 168,  35,  56, 175,  37])

In [19]: np.array_equal(beta ** i, x)
Out[19]: True
In [20]: beta = GF.primitive_elements[-1]; beta
Out[20]: GF(2α^4 + 2α^3 + 2α^2 + 2α + 2, order=3^5)

In [21]: i = x.log(beta); i
Out[21]: array([ 87, 111,  78,  58,  88, 168,  35,  56, 175,  37])

In [22]: np.array_equal(beta ** i, x)
Out[22]: True
In [23]: beta = GF.primitive_elements[-1]; beta
Out[23]: GF(α^185, order=3^5)

In [24]: i = x.log(beta); i
Out[24]: array([ 87, 111,  78,  58,  88, 168,  35,  56, 175,  37])

In [25]: np.array_equal(beta ** i, x)
Out[25]: True

Compute the logarithm of a single finite field element base all of the primitive elements of the field.

In [26]: x = GF.Random(low=1); x
Out[26]: GF(136, order=3^5)

In [27]: bases = GF.primitive_elements

In [28]: i = x.log(bases); i
Out[28]: 
array([ 99,  33, 165, 231, 209, 231,  77, 231,  77,  55, 143,  33,  11,
        55,  33, 165,  11,  77, 165, 187, 165, 187, 187,  77, 187,  33,
       231, 165,  33, 231,  77, 143,  99, 209, 187, 231,  99, 187,  77,
        11, 165, 231, 209,  99, 165,  55,  77,  11, 231,  77, 187, 209,
       209, 143, 231,  33,  11,  99,  33,  55,  55,  33, 143, 231, 143,
       231, 187, 165,  55, 143, 165,  99,  11, 143, 143,  55, 187,  99,
        55,  33, 165,  77, 143, 209,  55,  11,  33,  55, 209,  33, 209,
       209,  11, 187, 143, 143,  77, 187, 165, 209,  99,  99,  11,  55,
        11,  99,  99, 209,  77,  11])

In [29]: np.all(bases ** i == x)
Out[29]: True
In [30]: x = GF.Random(low=1); x
Out[30]: GF(α^4 + α^3 + 2α, order=3^5)

In [31]: bases = GF.primitive_elements

In [32]: i = x.log(bases); i
Out[32]: 
array([231,  77, 143,  55, 165,  55,  99,  55,  99, 209,  11,  77, 187,
       209,  77, 143, 187,  99, 143,  33, 143,  33,  33,  99,  33,  77,
        55, 143,  77,  55,  99,  11, 231, 165,  33,  55, 231,  33,  99,
       187, 143,  55, 165, 231, 143, 209,  99, 187,  55,  99,  33, 165,
       165,  11,  55,  77, 187, 231,  77, 209, 209,  77,  11,  55,  11,
        55,  33, 143, 209,  11, 143, 231, 187,  11,  11, 209,  33, 231,
       209,  77, 143,  99,  11, 165, 209, 187,  77, 209, 165,  77, 165,
       165, 187,  33,  11,  11,  99,  33, 143, 165, 231, 231, 187, 209,
       187, 231, 231, 165,  99, 187])

In [33]: np.all(bases ** i == x)
Out[33]: True
In [34]: x = GF.Random(low=1); x
Out[34]: GF(α^68, order=3^5)

In [35]: bases = GF.primitive_elements

In [36]: i = x.log(bases); i
Out[36]: 
array([ 68,   8,  62,  34,  14,  12,  92, 166,   4, 160, 152, 184, 164,
       182, 228, 194, 230, 158,  18,  60, 150, 148, 192, 136,  82, 162,
        56,  84,  96, 100,  70, 196, 134, 212,  16, 122, 112, 170, 114,
        32,  40,  78, 146, 156, 106,  94,  26, 208, 210, 202, 104,  36,
       102,  42, 232, 206,  10, 178,  52, 116,  28, 118, 218, 188,  86,
       144,  38, 172, 138, 174, 216, 222, 142, 240,  20,   6, 236,  90,
        72,  74, 128, 224, 130, 190, 226,  76,  30,  50, 124, 140,  80,
       234, 120, 126, 108,  64,  48, 214, 238, 168,   2,  24, 186, 204,
        98, 200,  46,  58, 180,  54])

In [37]: np.all(bases ** i == x)
Out[37]: True

Last update: Nov 10, 2022