galois.FieldArray.log(base: ElementLike | ArrayLike | None = None) int | ndarray

Computes the logarithm of the array \(x\) base \(\beta\).

Danger

If the Galois field is configured to use lookup tables, ufunc_mode == "jit-lookup", and this function is invoked with a base different from primitive_element, then explicit calculation will be used (which is slower than lookup tables).

Parameters
base: ElementLike | ArrayLike | None = None

A primitive element(s) \(\beta\) of the finite field that is the base of the logarithm. The default is None which uses primitive_element.

Returns

An integer array \(i\) of powers of \(\beta\) such that \(\beta^i = x\). The return array shape obeys NumPy broadcasting rules.

Examples

Compute the logarithm of \(x\) with default base \(\alpha\), which is the specified primitive element of the field.

In [1]: GF = galois.GF(3**5)

In [2]: alpha = GF.primitive_element; alpha
Out[2]: GF(3, order=3^5)

In [3]: x = GF.Random(10, low=1); x
Out[3]: GF([ 13,  55, 218, 224, 139, 199,  84, 156,  33, 194], order=3^5)

In [4]: i = x.log(); i
Out[4]: array([ 10, 136,  44, 155,  59, 164, 208,  80,  75, 141])

In [5]: np.array_equal(alpha ** i, x)
Out[5]: True
In [6]: GF = galois.GF(3**5, repr="poly")

In [7]: alpha = GF.primitive_element; alpha
Out[7]: GF(α, order=3^5)

In [8]: x = GF.Random(10, low=1); x
Out[8]: 
GF([   2α^4 + α^3 + α^2 + 2α,     α^4 + α^3 + α^2 + 2α,
             α^4 + 2α^2 + 2α,      2α^3 + α^2 + 2α + 1,
                α^2 + 2α + 2,      2α^4 + α^3 + 2α + 1,
         2α^3 + 2α^2 + α + 1, α^4 + 2α^3 + α^2 + α + 1,
                     α^2 + 2,                2α^4 + 2α], order=3^5)

In [9]: i = x.log(); i
Out[9]: array([201, 217, 150, 172, 222,  91,  22,  54,  74,  87])

In [10]: np.array_equal(alpha ** i, x)
Out[10]: True
In [11]: GF = galois.GF(3**5, repr="power")

In [12]: alpha = GF.primitive_element; alpha
Out[12]: GF(α, order=3^5)

In [13]: x = GF.Random(10, low=1); x
Out[13]: 
GF([α^112,  α^66,  α^83, α^173, α^175, α^185, α^141,  α^35,  α^59, α^179],
   order=3^5)

In [14]: i = x.log(); i
Out[14]: array([112,  66,  83, 173, 175, 185, 141,  35,  59, 179])

In [15]: np.array_equal(alpha ** i, x)
Out[15]: True

With the default argument, numpy.log() and log() are equivalent.

In [16]: np.array_equal(np.log(x), x.log())
Out[16]: True

Compute the logarithm of \(x\) with a different base \(\beta\), which is another primitive element of the field.

In [17]: beta = GF.primitive_elements[-1]; beta
Out[17]: GF(242, order=3^5)

In [18]: i = x.log(beta); i
Out[18]: array([ 32,  88,  41, 205, 171,   1,  23, 131, 207, 103])

In [19]: np.array_equal(beta ** i, x)
Out[19]: True
In [20]: beta = GF.primitive_elements[-1]; beta
Out[20]: GF(2α^4 + 2α^3 + 2α^2 + 2α + 2, order=3^5)

In [21]: i = x.log(beta); i
Out[21]: array([ 32,  88,  41, 205, 171,   1,  23, 131, 207, 103])

In [22]: np.array_equal(beta ** i, x)
Out[22]: True
In [23]: beta = GF.primitive_elements[-1]; beta
Out[23]: GF(α^185, order=3^5)

In [24]: i = x.log(beta); i
Out[24]: array([ 32,  88,  41, 205, 171,   1,  23, 131, 207, 103])

In [25]: np.array_equal(beta ** i, x)
Out[25]: True

Compute the logarithm of a single finite field element base all of the primitive elements of the field.

In [26]: x = GF.Random(low=1); x
Out[26]: GF(112, order=3^5)

In [27]: bases = GF.primitive_elements

In [28]: i = x.log(bases); i
Out[28]: 
array([ 34,   4, 152, 138, 128,   6,  46, 204,   2,  80,  76,  92,  82,
       212, 114, 218, 236, 200, 130,  30, 196,  74,  96,  68, 162, 202,
        28,  42,  48,  50, 156,  98, 188, 106,   8, 182,  56, 206, 178,
        16,  20, 160, 194,  78, 174, 168, 134, 104, 226, 222,  52,  18,
       172, 142, 116, 224, 126, 210,  26,  58,  14, 180, 230,  94, 164,
        72, 140,  86, 190, 208, 108, 232, 192, 120,  10, 124, 118, 166,
        36, 158,  64, 112, 186, 216, 234,  38, 136, 146,  62,  70,  40,
       238,  60, 184,  54,  32,  24, 228, 240,  84, 122,  12, 214, 102,
       170, 100, 144, 150,  90, 148])

In [29]: np.all(bases ** i == x)
Out[29]: True
In [30]: x = GF.Random(low=1); x
Out[30]: GF(α^4 + 2α^3 + 2α + 2, order=3^5)

In [31]: bases = GF.primitive_elements

In [32]: i = x.log(bases); i
Out[32]: 
array([ 26,  60, 102, 134, 226,  90, 206, 156,  30, 232, 172, 170,  20,
        34,  16, 124, 152,  96,  14, 208,  36, 142, 230,  52,  10, 126,
       178, 146, 236,  24, 162,  18, 158, 138, 120,  68, 114, 186,   8,
       240,  58, 222,   6, 202, 190, 100,  74, 108,   2, 184,  54,  28,
       160, 194,  46, 214, 196,   4, 148, 144, 210,  38,  62, 200,  40,
       112, 164,  80, 188, 216, 168,  92, 218, 106, 150, 166,  76,  70,
        56, 192, 234, 228, 128,  94, 122,  86, 104,  12, 204,  82, 116,
       182, 174,  98,  84, 238, 118,  32, 212,  50, 136, 180,  64,  78,
       130,  48, 224,  72, 140,  42])

In [33]: np.all(bases ** i == x)
Out[33]: True
In [34]: x = GF.Random(low=1); x
Out[34]: GF(α^132, order=3^5)

In [35]: bases = GF.primitive_elements

In [36]: i = x.log(bases); i
Out[36]: 
array([132,  44, 220,  66, 198,  66,  22,  66,  22, 154, 110,  44, 176,
       154,  44, 220, 176,  22, 220,  88, 220,  88,  88,  22,  88,  44,
        66, 220,  44,  66,  22, 110, 132, 198,  88,  66, 132,  88,  22,
       176, 220,  66, 198, 132, 220, 154,  22, 176,  66,  22,  88, 198,
       198, 110,  66,  44, 176, 132,  44, 154, 154,  44, 110,  66, 110,
        66,  88, 220, 154, 110, 220, 132, 176, 110, 110, 154,  88, 132,
       154,  44, 220,  22, 110, 198, 154, 176,  44, 154, 198,  44, 198,
       198, 176,  88, 110, 110,  22,  88, 220, 198, 132, 132, 176, 154,
       176, 132, 132, 198,  22, 176])

In [37]: np.all(bases ** i == x)
Out[37]: True