galois.FieldArray.log(base: ElementLike | ArrayLike | None = None) int | ndarray

Computes the discrete logarithm of the array \(x\) base \(\beta\).

Parameters:
base: ElementLike | ArrayLike | None = None

A primitive element or elements \(\beta\) of the finite field that is the base of the logarithm. The default is None which uses primitive_element.

Slower performance

If the FieldArray is configured to use lookup tables (ufunc_mode == "jit-lookup") and this method is invoked with a base different from primitive_element, then explicit calculation will be used (which is slower than using lookup tables).

Returns:

An integer array \(i\) of powers of \(\beta\) such that \(\beta^i = x\). The return array shape obeys NumPy broadcasting rules.

Examples

Compute the logarithm of \(x\) with default base \(\alpha\), which is the specified primitive element of the field.

In [1]: GF = galois.GF(3**5)

In [2]: alpha = GF.primitive_element; alpha
Out[2]: GF(3, order=3^5)

In [3]: x = GF.Random(10, low=1); x
Out[3]: GF([118,  93, 131, 235,   4, 121,  76, 194,  38, 174], order=3^5)

In [4]: i = x.log(); i
Out[4]: array([ 83, 215, 218, 239,  69,  64,  22, 141, 230,  29])

In [5]: np.array_equal(alpha ** i, x)
Out[5]: True
In [6]: GF = galois.GF(3**5, repr="poly")

In [7]: alpha = GF.primitive_element; alpha
Out[7]: GF(α, order=3^5)

In [8]: x = GF.Random(10, low=1); x
Out[8]: 
GF([        α^4 + 2α^2 + 2α,                α^4 + 2α,
                      α + 1,            2α^2 + α + 2,
              α^4 + α^3 + 2,                      2α,
             α^3 + 2α^2 + 1, 2α^4 + 2α^3 + 2α^2 + 2α,
              α^3 + α^2 + α,    α^4 + α^3 + 2α^2 + 1], order=3^5)

In [9]: i = x.log(); i
Out[9]: array([150,  16,  69,  17, 119, 122, 112, 237,  11,  25])

In [10]: np.array_equal(alpha ** i, x)
Out[10]: True
In [11]: GF = galois.GF(3**5, repr="power")

In [12]: alpha = GF.primitive_element; alpha
Out[12]: GF(α, order=3^5)

In [13]: x = GF.Random(10, low=1); x
Out[13]: 
GF([ α^54, α^200,  α^88,  α^56,  α^55, α^192, α^229,  α^14,  α^62, α^171],
   order=3^5)

In [14]: i = x.log(); i
Out[14]: array([ 54, 200,  88,  56,  55, 192, 229,  14,  62, 171])

In [15]: np.array_equal(alpha ** i, x)
Out[15]: True

With the default argument, numpy.log() and log() are equivalent.

In [16]: np.array_equal(np.log(x), x.log())
Out[16]: True

Compute the logarithm of \(x\) with a different base \(\beta\), which is another primitive element of the field.

In [17]: beta = GF.primitive_elements[-1]; beta
Out[17]: GF(242, order=3^5)

In [18]: i = x.log(beta); i
Out[18]: array([ 50, 230, 198,  16,  33, 124, 221,   4, 156, 239])

In [19]: np.array_equal(beta ** i, x)
Out[19]: True
In [20]: beta = GF.primitive_elements[-1]; beta
Out[20]: GF(2α^4 + 2α^3 + 2α^2 + 2α + 2, order=3^5)

In [21]: i = x.log(beta); i
Out[21]: array([ 50, 230, 198,  16,  33, 124, 221,   4, 156, 239])

In [22]: np.array_equal(beta ** i, x)
Out[22]: True
In [23]: beta = GF.primitive_elements[-1]; beta
Out[23]: GF(α^185, order=3^5)

In [24]: i = x.log(beta); i
Out[24]: array([ 50, 230, 198,  16,  33, 124, 221,   4, 156, 239])

In [25]: np.array_equal(beta ** i, x)
Out[25]: True

Compute the logarithm of a single finite field element base all of the primitive elements of the field.

In [26]: x = GF.Random(low=1); x
Out[26]: GF(234, order=3^5)

In [27]: bases = GF.primitive_elements

In [28]: i = x.log(bases); i
Out[28]: 
array([133,  37,  75, 127,  95, 237, 123, 193,  79, 135, 219, 125,  93,
        25, 147, 141,   5,  35,  53, 217, 119,  19,  41, 145, 107, 235,
        17, 207,  81,  39, 233, 241,  45,  73, 195, 171, 155, 151,  13,
        27, 185, 149, 161, 177,  97, 223, 211, 115, 215,  57, 239, 227,
       139,  43, 105,  15, 137,  67,  59, 113,  69, 213, 131,  83,  65,
        61,  85,   9,   3, 109,  31,  89, 203,  21, 153, 179,  63,  23,
        91, 191, 229, 189,  87, 183,  47,  49, 169, 201,  29, 103,   7,
       205,  71, 129, 197, 175, 101, 173, 163,  51, 221, 111, 225, 157,
       181, 199,   1, 117, 167, 159])

In [29]: np.all(bases ** i == x)
Out[29]: True
In [30]: x = GF.Random(low=1); x
Out[30]: GF(2α^4 + 2α^3 + 2α^2 + 1, order=3^5)

In [31]: bases = GF.primitive_elements

In [32]: i = x.log(bases); i
Out[32]: 
array([239,  21, 193,  59,  67, 213, 181, 103,  71,  57, 157, 241,   7,
       145, 175, 237,  29, 203,  17,  97,  61, 207, 141, 115, 185, 153,
       147,  39, 131,  81,  93,  91,  19, 133, 163, 169, 173,  53,  27,
       205, 105, 235, 111, 107, 127,  35, 159, 183,  37, 137,  31, 155,
       177, 201, 125,  87, 117, 195, 197, 123,  13, 219, 179, 191, 135,
        15,   9, 149, 211,   3,  83, 129, 161,  25, 113, 167,  75,  85,
       189,  43, 215, 225,  69,  45,  79, 139, 109, 101,  23,  65,  89,
       221,  73, 119, 223,  47,   5, 229, 171, 199, 217,  63,  95, 233,
       227,  41, 151,   1,  49,  51])

In [33]: np.all(bases ** i == x)
Out[33]: True
In [34]: x = GF.Random(low=1); x
Out[34]: GF(α^43, order=3^5)

In [35]: bases = GF.primitive_elements

In [36]: i = x.log(bases); i
Out[36]: 
array([ 43, 183,  57, 203, 169,  93, 229, 137,  31, 151,  89,  95,  61,
        19,  73, 233, 149,  75,  79, 223,  13, 179, 157, 207,  91, 227,
        71, 167, 139,  49, 119,  67, 131, 191,   3, 159,  21,  47,  97,
       127, 189, 181, 103, 241,  35,  63, 141,  39, 115,  53, 201,  37,
       125,  23, 225, 205,  17, 109, 161, 173, 217,   7, 177,   5,   1,
        27, 113, 123,  41, 199, 101,  87, 193,  45, 155, 107, 135, 153,
       195,  29, 145, 163, 221,  81, 239, 105,  51,  85, 235, 117,  15,
        59,  83,  69, 111, 133,   9,  25, 211, 213, 197,  65, 171, 129,
       215, 219, 175, 147, 185, 237])

In [37]: np.all(bases ** i == x)
Out[37]: True