property galois.FLFSR.taps : FieldArray

The shift register taps \(T = [c_{n-1}, c_{n-2}, \dots, c_1, c_0]\). The taps of the shift register define the linear recurrence relation.

Examples

In [1]: c = galois.primitive_poly(7, 4); c
Out[1]: Poly(x^4 + x^2 + 3x + 5, GF(7))

In [2]: taps = -c.coeffs[1:]; taps
Out[2]: GF([0, 6, 4, 2], order=7)

In [3]: lfsr = galois.FLFSR.Taps(taps); lfsr
Out[3]: <Fibonacci LFSR: f(x) = 5x^4 + 3x^3 + x^2 + 1 over GF(7)>

In [4]: lfsr.taps
Out[4]: GF([0, 6, 4, 2], order=7)