galois.FieldArray.log(base: ElementLike | ArrayLike | None = None) int | ndarray

Computes the discrete logarithm of the array \(x\) base \(\beta\).

Parameters:
base: ElementLike | ArrayLike | None = None

A primitive element or elements \(\beta\) of the finite field that is the base of the logarithm. The default is None which uses primitive_element.

Slower performance

If the FieldArray is configured to use lookup tables (ufunc_mode == "jit-lookup") and this method is invoked with a base different from primitive_element, then explicit calculation will be used (which is slower than using lookup tables).

Returns:

An integer array \(i\) of powers of \(\beta\) such that \(\beta^i = x\). The return array shape obeys NumPy broadcasting rules.

Examples

Compute the logarithm of \(x\) with default base \(\alpha\), which is the specified primitive element of the field.

In [1]: GF = galois.GF(3**5)

In [2]: alpha = GF.primitive_element; alpha
Out[2]: GF(3, order=3^5)

In [3]: x = GF.Random(10, low=1); x
Out[3]: GF([132, 205, 124, 148,  42, 206, 112, 150, 181,  72], order=3^5)

In [4]: i = x.log(); i
Out[4]: array([144,  24,  41,  54, 210,  55,  34,  52, 135, 192])

In [5]: np.array_equal(alpha ** i, x)
Out[5]: True
In [6]: GF = galois.GF(3**5, repr="poly")

In [7]: alpha = GF.primitive_element; alpha
Out[7]: GF(α, order=3^5)

In [8]: x = GF.Random(10, low=1); x
Out[8]: 
GF([                   α^4 + 1, α^4 + 2α^3 + 2α^2 + 2α + 2,
          α^4 + α^3 + 2α^2 + 2,                   2α^4 + 2,
          2α^3 + 2α^2 + 2α + 2,                   2α^2 + 1,
               2α^3 + 2α^2 + 2,       2α^4 + 2α^2 + 2α + 2,
           2α^4 + α^3 + 2α + 2,                   2α^3 + α], order=3^5)

In [9]: i = x.log(); i
Out[9]: array([189, 203,  66,  68, 236, 195, 106,  21, 180, 196])

In [10]: np.array_equal(alpha ** i, x)
Out[10]: True
In [11]: GF = galois.GF(3**5, repr="power")

In [12]: alpha = GF.primitive_element; alpha
Out[12]: GF(α, order=3^5)

In [13]: x = GF.Random(10, low=1); x
Out[13]: 
GF([α^187, α^158,  α^61,   α^2,  α^42, α^138, α^171,  α^21,  α^73,  α^73],
   order=3^5)

In [14]: i = x.log(); i
Out[14]: array([187, 158,  61,   2,  42, 138, 171,  21,  73,  73])

In [15]: np.array_equal(alpha ** i, x)
Out[15]: True

With the default argument, numpy.log() and log() are equivalent.

In [16]: np.array_equal(np.log(x), x.log())
Out[16]: True

Compute the logarithm of \(x\) with a different base \(\beta\), which is another primitive element of the field.

In [17]: beta = GF.primitive_elements[-1]; beta
Out[17]: GF(242, order=3^5)

In [18]: i = x.log(beta); i
Out[18]: array([209, 218, 173, 208,  12,  74, 239, 127, 211, 211])

In [19]: np.array_equal(beta ** i, x)
Out[19]: True
In [20]: beta = GF.primitive_elements[-1]; beta
Out[20]: GF(2α^4 + 2α^3 + 2α^2 + 2α + 2, order=3^5)

In [21]: i = x.log(beta); i
Out[21]: array([209, 218, 173, 208,  12,  74, 239, 127, 211, 211])

In [22]: np.array_equal(beta ** i, x)
Out[22]: True
In [23]: beta = GF.primitive_elements[-1]; beta
Out[23]: GF(α^185, order=3^5)

In [24]: i = x.log(beta); i
Out[24]: array([209, 218, 173, 208,  12,  74, 239, 127, 211, 211])

In [25]: np.array_equal(beta ** i, x)
Out[25]: True

Compute the logarithm of a single finite field element base all of the primitive elements of the field.

In [26]: x = GF.Random(low=1); x
Out[26]: GF(7, order=3^5)

In [27]: bases = GF.primitive_elements

In [28]: i = x.log(bases); i
Out[28]: 
array([126,  86, 122, 184,  90,   8, 142,  30, 164,  26, 182,  42, 190,
       202, 152, 210, 234, 186,  12,  40, 100,  18, 128,  10, 216, 108,
       118,  56,  64, 228, 208,  50, 170, 222, 172, 162, 236, 194,  76,
       102, 188,  52, 178, 104, 232, 224,  98,  58, 140,  54, 150,  24,
        68,  28,  74, 218, 168,  38, 196, 158, 180, 240, 226, 206, 138,
        96, 106,  34,  92, 116, 144, 148,  14, 160,  94,   4, 238,  60,
        48, 130, 166, 230,   6,  46,  70, 212,  20, 114,   2, 174, 134,
       156,  80,  84,  72, 204,  32,  62,  78, 112,  82,  16, 124, 136,
       146, 214, 192, 200, 120,  36])

In [29]: np.all(bases ** i == x)
Out[29]: True
In [30]: x = GF.Random(low=1); x
Out[30]: GF(α^4 + 2α^3 + 2, order=3^5)

In [31]: bases = GF.primitive_elements

In [32]: i = x.log(bases); i
Out[32]: 
array([ 67,  15, 207, 215, 117,  83, 233,  39, 189, 179,  43, 103,   5,
        69, 125,  31, 159, 145, 185, 173,   9, 217, 239,  13,  63, 213,
       105,  97,  59, 127, 101,  65, 221,  95, 151,  17,  89, 107, 123,
       181,  75, 237, 183, 111, 229,  25,  79,  27,  61, 167, 195,   7,
       161, 109, 193, 235,  49,   1,  37, 157, 113, 191, 197, 171, 131,
       149,  41, 141,  47, 175, 163,  23, 115,  87, 219, 223,  19, 199,
       135, 169, 119,  57, 153, 205,  91, 203, 147,   3,  51,  81,  29,
       227, 225,  85,  21, 241, 211, 129,  53,  73, 155,  45, 137, 201,
        93, 133, 177, 139,  35,  71])

In [33]: np.all(bases ** i == x)
Out[33]: True
In [34]: x = GF.Random(low=1); x
Out[34]: GF(α^105, order=3^5)

In [35]: bases = GF.primitive_elements

In [36]: i = x.log(bases); i
Out[36]: 
array([105, 233,  21, 113,  75,  47, 199,  25, 177, 183,  71,  35, 239,
         7, 167, 175, 195, 155, 131, 235,  43,  15, 147,  89,  59, 211,
       179,  87,  13,  69, 133, 203,  61, 185, 103, 135, 237,  81,  23,
        85, 197,   3, 229, 127, 153, 227,   1, 129, 157,  45, 125, 141,
        97, 225, 223, 101,  19, 193, 123,  51,  29,  79,  27,  91, 115,
       201, 169, 109, 117, 137, 241,  83, 173,  93, 159, 205,  37, 171,
       161, 189, 219, 111,   5, 119, 139, 217,  57,  95, 163, 145,  31,
         9, 107, 191, 181,  49,  67, 213,  65,  53, 149, 215,  63,  73,
        41,  17,  39, 207, 221, 151])

In [37]: np.all(bases ** i == x)
Out[37]: True