classmethod galois.FieldArray.Range(step: int = `1`, dtype: = `None`) Self

Creates a 1-D array with a range of elements.

Parameters:
start: ElementLike

The starting element (inclusive).

stop: ElementLike

The stopping element (exclusive).

step: int = `1`

The increment between elements. The default is 1.

dtype: = `None`

The `numpy.dtype` of the array elements. The default is `None` which represents the smallest unsigned data type for this `FieldArray` subclass (the first element in `dtypes`).

Returns:

A 1-D array of a range of elements.

Examples

For prime fields, the increment is simply a finite field element, since all elements are integers.

``````In [1]: GF = galois.GF(31)

In [2]: GF.Range(10, 20)
Out[2]: GF([10, 11, 12, 13, 14, 15, 16, 17, 18, 19], order=31)

In [3]: GF.Range(10, 20, 2)
Out[3]: GF([10, 12, 14, 16, 18], order=31)
``````

For extension fields, the increment is the integer increment between finite field elements in their integer representation.

``````In [4]: GF = galois.GF(3**3)

In [5]: GF.Range(10, 20)
Out[5]: GF([10, 11, 12, 13, 14, 15, 16, 17, 18, 19], order=3^3)

In [6]: GF.Range(10, 20, 2)
Out[6]: GF([10, 12, 14, 16, 18], order=3^3)
``````
``````In [7]: GF = galois.GF(3**3, repr="poly")

In [8]: GF.Range(10, 20)
Out[8]:
GF([     α^2 + 1,      α^2 + 2,      α^2 + α,  α^2 + α + 1,  α^2 + α + 2,
α^2 + 2α, α^2 + 2α + 1, α^2 + 2α + 2,         2α^2,     2α^2 + 1],
order=3^3)

In [9]: GF.Range(10, 20, 2)
Out[9]:
GF([     α^2 + 1,      α^2 + α,  α^2 + α + 2, α^2 + 2α + 1,         2α^2],
order=3^3)
``````